Homogenization of a nonlinear elliptic problem with large nonlinear potential
نویسندگان
چکیده
منابع مشابه
Homogenization of a Nonlinear Elliptic Boundary Value Problem Modeling Galvanic Currents
We study a nonlinear elliptic boundary value problem arising from electrochemistry in the study of heterogeneous electrode surfaces. The boundary condition is of exponential type (Butler–Volmer) and has a periodic structure. We find a limiting or effective problem as the period approaches zero, along with a first order correction. We establish convergence estimates and provide numerical experim...
متن کاملOn a singular nonlinear semilinear elliptic problem
where K(x)μC2,b(V9 ), a, pμ(0, 1) and l is a real parameter. Such singular elliptic problems arise in the contexts of chemical heterogeneous catalysts, nonNewtonian fluids and also the theory of heat conduction in electrically conducting materials, see [3, 5, 8, 9] for a detailed discussion. Obviously (1.1) cannot have a solution uμC2(V9 ) if K(x) is not vanishing near ∂V. However, under variou...
متن کاملOn a Nonlinear Elliptic Boundary Value Problem
Consider a bounded domain G C R (_N>1) with smooth boundary T . Let L be a uniformly elliptic linear differential operator. Let y and ß be two maximal monotone mappings in R. We prove that, when y ? 2 satisfies a certain growth condition, given f £ L (G ) there is u € H (G) such that Lu + y(u) 3 f a.e. on G, and -du/d v e ß(u\ ) a.e. on T, where du/civ is the conormal derivative associated with...
متن کاملJustification of the lattice equation for a nonlinear elliptic problem with a periodic potential
We justify the use of the lattice equation (the discrete nonlinear Schrödinger equation) for the tight-binding approximation of stationary localized solutions in the context of a continuous nonlinear elliptic problem with a periodic potential. We rely on properties of the Floquet band-gap spectrum and the Fourier–Bloch decomposition for a linear Schrödinger operator with a periodic potential. S...
متن کاملJustification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential
Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2012
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036811.2012.670225