Homogenization of a nonlinear elliptic problem with large nonlinear potential

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogenization of a Nonlinear Elliptic Boundary Value Problem Modeling Galvanic Currents

We study a nonlinear elliptic boundary value problem arising from electrochemistry in the study of heterogeneous electrode surfaces. The boundary condition is of exponential type (Butler–Volmer) and has a periodic structure. We find a limiting or effective problem as the period approaches zero, along with a first order correction. We establish convergence estimates and provide numerical experim...

متن کامل

On a singular nonlinear semilinear elliptic problem

where K(x)μC2,b(V9 ), a, pμ(0, 1) and l is a real parameter. Such singular elliptic problems arise in the contexts of chemical heterogeneous catalysts, nonNewtonian fluids and also the theory of heat conduction in electrically conducting materials, see [3, 5, 8, 9] for a detailed discussion. Obviously (1.1) cannot have a solution uμC2(V9 ) if K(x) is not vanishing near ∂V. However, under variou...

متن کامل

On a Nonlinear Elliptic Boundary Value Problem

Consider a bounded domain G C R (_N>1) with smooth boundary T . Let L be a uniformly elliptic linear differential operator. Let y and ß be two maximal monotone mappings in R. We prove that, when y ? 2 satisfies a certain growth condition, given f £ L (G ) there is u € H (G) such that Lu + y(u) 3 f a.e. on G, and -du/d v e ß(u\ ) a.e. on T, where du/civ is the conormal derivative associated with...

متن کامل

Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential

We justify the use of the lattice equation (the discrete nonlinear Schrödinger equation) for the tight-binding approximation of stationary localized solutions in the context of a continuous nonlinear elliptic problem with a periodic potential. We rely on properties of the Floquet band-gap spectrum and the Fourier–Bloch decomposition for a linear Schrödinger operator with a periodic potential. S...

متن کامل

Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2012

ISSN: 0003-6811,1563-504X

DOI: 10.1080/00036811.2012.670225